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Abstract 
MEMS resonators, currently made out of poly-Si [1], have potential applications in the areas of RFMEMS, 

resonant sensors and MEMS oscillators. However, due to material limitations of poly-Si resonators, new materials 
such as polycrystalline diamond (poly-C) offer an excellent alternate [2,3]. The goal of this work is to develop a 
reliable and reproducible poly-C resonator technology for possible applications in resonant sensors and MEMS 
oscillators, benefiting from carbon based micro and nano technologies developed at Michigan State University [4].  
The poly-C resonators, fabricated at MSU are tested using electrostatic (MSU) and piezoelectric (Sandia National 
Laboratories) actuation methods.  

FABRICATION TECHNOLOGY 
Continuous poly-C films with low surface roughness and high quality (indicated by high sp3/sp2 ratios) affect 

the resonator performance. A better control of nucleation density along with deposition parameters can help produce 
high quality poly-C films [4]. An earlier study [3] showed the influence of growth temperature and diamond powder 
size on the poly-C film quality. Higher growth temperatures typically lead to better film quality but rough surface. 
The seeding was provided by nanodiamond particles (10 - 50 nm) leading to a nucleation density of 1 x 1011 cm-2. 
The poly-C films, with surface roughness in the range of 18-23 nm, were patterned using dry etching. This work 
includes the comparison between poly-C films grown in different environments. One set of samples were grown in 
MPCVD in the temperature range of 600-650 °C using 1.5% CH4 in hydrogen, and the other were grown in the 
same temperature range but using a gas mixture of Ar/H2/CH4 (100:2:1) . 

Sidewall Roughness 
Another important point is the sidewall roughness resulting from dry etching, which depends on the grain size 

of the poly-C film. It has been reported that the optimum diamond grain size can be controlled by adjusting the flow 
rate of Ar/H2 in the MPCVD reaction chamber [5,6]. Poly-C films were grown in a gas mixture using Ar/H2/CH4 
plasma. The sidewall smoothness of the fabricated resonator structures using the new films are compared to that of 
earlier results (poly-C films grown in H2 plasma) as shown in figure 1. The results show a smoother film sidewall 
for poly-C films grown in Ar/H2/CH4 plasma. These results are reported for the first time.  

TESTING 
The previous studies of poly-C resonator technology [3] with minimum feature sizes in the range of 1 - 2 μm 

led to an excellent quality of released structures. These structures have now been excited using electrostatic 
actuation and the initial results are shown in figure 2. Bridges and comb-drive structures have been tested. The 
frequencies and quality factors are in the range of 0.303 – 2.09 MHz and 1,000 - 1,500, respectively. Currently, the 
samples are being measured at Sandia National Laboratories using piezoelectric actuation. The results from these 
measurements will be compared with the results obtained by using electrostatic actuation.  
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Figure 1 Poly-C structures grown in different environments (a)Ar H2/CH4, 
(b) H2/CH4 

20 µm 

5 µm 2 µm 

Folded 
Truss 

Folded 
Beam 

Folded 
Beam 

Proof 
Mass 

Proof 
Mass 

Folded Truss 

Folded Beam 

a) 

b) 

20 µm 

1 µm 

Structure 
Sidewall 

1 µm 

Structure 
Sidewall 

 

Frequency 
(Hz) 

A 
M 
P 
L 
I 
T 
U 
D 
E 

(dB) 

a) b) 

Figure 2 Testing results for a poly-C bridge (a), and a comb-drive resonator (b).  
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